Integral of $$$\frac{1 - x}{x + 1}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1 - x}{x + 1}\, dx$$$.
Solution
Let $$$u=x + 1$$$.
Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$${\color{red}{\int{\frac{1 - x}{x + 1} d x}}} = {\color{red}{\int{\frac{2 - u}{u} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{2 - u}{u} d u}}} = {\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}}$$
Integrate term by term:
$${\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{2}{u} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\int{\frac{2}{u} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{2}{u} d u} - {\color{red}{u}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$- u + {\color{red}{\int{\frac{2}{u} d u}}} = - u + {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- u + 2 {\color{red}{\int{\frac{1}{u} d u}}} = - u + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x + 1$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = 2 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} - {\color{red}{\left(x + 1\right)}}$$
Therefore,
$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)} - 1$$
Add the constant of integration (and remove the constant from the expression):
$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)}+C$$
Answer
$$$\int \frac{1 - x}{x + 1}\, dx = \left(- x + 2 \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A