Area of the region between the graphs of $$$y = \frac{1}{x^{2} + 1}$$$, $$$y = \frac{1}{2}$$$
Your Input
Find the area of the region bounded by the curves $$$y = \frac{1}{x^{2} + 1}$$$, $$$y = \frac{1}{2}$$$.
Solution
$$$\int\limits_{-1}^{1} \left(\left(\frac{1}{x^{2} + 1}\right) - \left(\frac{1}{2}\right)\right)\, dx = -1 + \frac{\pi}{2}\approx 0.570796326794897$$$
Total area: $$$A = -1 + \frac{\pi}{2}$$$.
Answer
Total area: $$$A = -1 + \frac{\pi}{2}\approx 0.570796326794897$$$A.
Please try a new game Rotatly