Area of the region between the graphs of $$$y = \frac{4 \left(x - 6\right)^{2}}{3} + 2$$$, $$$y = \frac{3 x^{2}}{4} - 9 x + 29$$$ from $$$x = 4$$$ to $$$x = 6$$$
Your Input
Find the area of the region bounded by the curves $$$y = \frac{4 \left(x - 6\right)^{2}}{3} + 2$$$, $$$y = \frac{3 x^{2}}{4} - 9 x + 29$$$ from $$$x = 4$$$ to $$$x = 6$$$.
Solution
$$$\int\limits_{4}^{6} \left(\left(\frac{4 x \left(x - 12\right)}{3} + 50\right) - \left(\frac{3 x \left(x - 12\right)}{4} + 29\right)\right)\, dx = \frac{14}{9}\approx 1.555555555555556$$$
Total area: $$$A = \frac{14}{9}$$$.
Answer
Total area: $$$A = \frac{14}{9}\approx 1.555555555555556$$$A.
Please try a new game Rotatly