Derivative of $$$x^{3 x}$$$
Related calculator: Derivative Calculator
Your Input
Find $$$\frac{d}{dx} \left(x^{3 x}\right)$$$.
Solution
Let $$$H{\left(x \right)} = x^{3 x}$$$.
Take the logarithm of both sides: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{3 x}\right)$$$.
Rewrite the RHS using the properties of logarithms: $$$\ln\left(H{\left(x \right)}\right) = 3 x \ln\left(x\right)$$$.
Differentiate separately both sides of the equation: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(3 x \ln\left(x\right)\right)$$$.
Differentiate the LHS of the equation.
The function $$$\ln\left(H{\left(x \right)}\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Return to the old variable:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Thus, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Differentiate the RHS of the equation.
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 3$$$ and $$$f{\left(x \right)} = x \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 x \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$Apply the product rule $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ with $$$f{\left(x \right)} = x$$$ and $$$g{\left(x \right)} = \ln\left(x\right)$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$The derivative of the natural logarithm is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 3 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 3 x {\color{red}\left(\frac{1}{x}\right)} + 3 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$3 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 3 = 3 \ln\left(x\right) {\color{red}\left(1\right)} + 3$$Thus, $$$\frac{d}{dx} \left(3 x \ln\left(x\right)\right) = 3 \ln\left(x\right) + 3$$$.
Hence, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 3 \ln\left(x\right) + 3$$$.
Therefore, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(3 \ln\left(x\right) + 3\right) H{\left(x \right)} = 3 x^{3 x} \left(\ln\left(x\right) + 1\right)$$$.
Answer
$$$\frac{d}{dx} \left(x^{3 x}\right) = 3 x^{3 x} \left(\ln\left(x\right) + 1\right)$$$A