Properties of the hyperbola $$$- \left(x - 6\right)^{2} + \frac{\left(y - 5\right)^{2}}{64} = 1$$$
Related calculators: Parabola Calculator, Circle Calculator, Ellipse Calculator, Conic Section Calculator
Your Input
Find the center, foci, vertices, co-vertices, major axis length, semi-major axis length, minor axis length, semi-minor axis length, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, asymptotes, x-intercepts, y-intercepts, domain, and range of the hyperbola $$$- \left(x - 6\right)^{2} + \frac{\left(y - 5\right)^{2}}{64} = 1$$$.
Solution
The equation of a hyperbola is $$$\frac{\left(y - k\right)^{2}}{b^{2}} - \frac{\left(x - h\right)^{2}}{a^{2}} = 1$$$, where $$$\left(h, k\right)$$$ is the center, $$$a$$$ and $$$b$$$ are the lengths of the semi-major and the semi-minor axes.
Our hyperbola in this form is $$$\frac{\left(y - 5\right)^{2}}{64} - \frac{\left(x - 6\right)^{2}}{1} = 1$$$.
Thus, $$$h = 6$$$, $$$k = 5$$$, $$$a = 1$$$, $$$b = 8$$$.
The standard form is $$$\frac{\left(y - 5\right)^{2}}{8^{2}} - \frac{\left(x - 6\right)^{2}}{1^{2}} = 1$$$.
The vertex form is $$$\frac{\left(y - 5\right)^{2}}{64} - \left(x - 6\right)^{2} = 1$$$.
The general form is $$$64 x^{2} - 768 x - y^{2} + 10 y + 2343 = 0$$$.
The linear eccentricity (focal distance) is $$$c = \sqrt{b^{2} + a^{2}} = \sqrt{65}$$$.
The eccentricity is $$$e = \frac{c}{b} = \frac{\sqrt{65}}{8}$$$.
The first focus is $$$\left(h, k - c\right) = \left(6, 5 - \sqrt{65}\right)$$$.
The second focus is $$$\left(h, k + c\right) = \left(6, 5 + \sqrt{65}\right)$$$.
The first vertex is $$$\left(h, k - b\right) = \left(6, -3\right)$$$.
The second vertex is $$$\left(h, k + b\right) = \left(6, 13\right)$$$.
The first co-vertex is $$$\left(h - a, k\right) = \left(5, 5\right)$$$.
The second co-vertex is $$$\left(h + a, k\right) = \left(7, 5\right)$$$.
The length of the major axis is $$$2 b = 16$$$.
The length of the minor axis is $$$2 a = 2$$$.
The focal parameter is the distance between the focus and the directrix: $$$\frac{a^{2}}{c} = \frac{\sqrt{65}}{65}$$$.
The latera recta are the lines parallel to the minor axis that pass through the foci.
The first latus rectum is $$$y = 5 - \sqrt{65}$$$.
The second latus rectum is $$$y = 5 + \sqrt{65}$$$.
The endpoints of the first latus rectum can be found by solving the system $$$\begin{cases} 64 x^{2} - 768 x - y^{2} + 10 y + 2343 = 0 \\ y = 5 - \sqrt{65} \end{cases}$$$ (for steps, see system of equations calculator).
The endpoints of the first latus rectum are $$$\left(\frac{47}{8}, 5 - \sqrt{65}\right)$$$, $$$\left(\frac{49}{8}, 5 - \sqrt{65}\right)$$$.
The endpoints of the second latus rectum can be found by solving the system $$$\begin{cases} 64 x^{2} - 768 x - y^{2} + 10 y + 2343 = 0 \\ y = 5 + \sqrt{65} \end{cases}$$$ (for steps, see system of equations calculator).
The endpoints of the second latus rectum are $$$\left(\frac{47}{8}, 5 + \sqrt{65}\right)$$$, $$$\left(\frac{49}{8}, 5 + \sqrt{65}\right)$$$.
The length of the latera recta (focal width) is $$$\frac{2 a^{2}}{b} = \frac{1}{4}$$$.
The first directrix is $$$y = k - \frac{b^{2}}{c} = 5 - \frac{64 \sqrt{65}}{65}$$$.
The second directrix is $$$y = k + \frac{b^{2}}{c} = \frac{325 + 64 \sqrt{65}}{65}$$$.
The first asymptote is $$$y = - \frac{b}{a} \left(x - h\right) + k = 53 - 8 x$$$.
The second asymptote is $$$y = \frac{b}{a} \left(x - h\right) + k = 8 x - 43$$$.
The x-intercepts can be found by setting $$$y = 0$$$ in the equation and solving for $$$x$$$ (for steps, see intercepts calculator).
Since there are no real solutions, there are no x-intercepts.
The y-intercepts can be found by setting $$$x = 0$$$ in the equation and solving for $$$y$$$: (for steps, see intercepts calculator).
y-intercepts: $$$\left(0, 5 - 8 \sqrt{37}\right)$$$, $$$\left(0, 5 + 8 \sqrt{37}\right)$$$
Answer
Standard form/equation: $$$\frac{\left(y - 5\right)^{2}}{8^{2}} - \frac{\left(x - 6\right)^{2}}{1^{2}} = 1$$$A.
Vertex form/equation: $$$\frac{\left(y - 5\right)^{2}}{64} - \left(x - 6\right)^{2} = 1$$$A.
General form/equation: $$$64 x^{2} - 768 x - y^{2} + 10 y + 2343 = 0$$$A.
First focus-directrix form/equation: $$$\left(x - 6\right)^{2} + \left(y - 5 + \sqrt{65}\right)^{2} = \frac{65 \left(y - 5 + \frac{64 \sqrt{65}}{65}\right)^{2}}{64}$$$A.
Second focus-directrix form/equation: $$$\left(x - 6\right)^{2} + \left(y - \sqrt{65} - 5\right)^{2} = \frac{65 \left(y - \frac{325 + 64 \sqrt{65}}{65}\right)^{2}}{64}$$$A.
Graph: see the graphing calculator.
Center: $$$\left(6, 5\right)$$$A.
First focus: $$$\left(6, 5 - \sqrt{65}\right)\approx \left(6, -3.06225774829855\right)$$$A.
Second focus: $$$\left(6, 5 + \sqrt{65}\right)\approx \left(6, 13.06225774829855\right)$$$A.
First vertex: $$$\left(6, -3\right)$$$A.
Second vertex: $$$\left(6, 13\right)$$$A.
First co-vertex: $$$\left(5, 5\right)$$$A.
Second co-vertex: $$$\left(7, 5\right)$$$A.
Major (transverse) axis length: $$$16$$$A.
Semi-major axis length: $$$8$$$A.
Minor (conjugate) axis length: $$$2$$$A.
Semi-minor axis length: $$$1$$$A.
First latus rectum: $$$y = 5 - \sqrt{65}\approx -3.06225774829855$$$A.
Second latus rectum: $$$y = 5 + \sqrt{65}\approx 13.06225774829855$$$A.
Endpoints of the first latus rectum: $$$\left(\frac{47}{8}, 5 - \sqrt{65}\right)\approx \left(5.875, -3.06225774829855\right)$$$, $$$\left(\frac{49}{8}, 5 - \sqrt{65}\right)\approx \left(6.125, -3.06225774829855\right)$$$A.
Endpoints of the second latus rectum: $$$\left(\frac{47}{8}, 5 + \sqrt{65}\right)\approx \left(5.875, 13.06225774829855\right)$$$, $$$\left(\frac{49}{8}, 5 + \sqrt{65}\right)\approx \left(6.125, 13.06225774829855\right)$$$A.
Length of the latera recta (focal width): $$$\frac{1}{4} = 0.25$$$A.
Focal parameter: $$$\frac{\sqrt{65}}{65}\approx 0.124034734589208$$$A.
Eccentricity: $$$\frac{\sqrt{65}}{8}\approx 1.007782218537319$$$A.
Linear eccentricity (focal distance): $$$\sqrt{65}\approx 8.06225774829855$$$A.
First directrix: $$$y = 5 - \frac{64 \sqrt{65}}{65}\approx -2.938223013709341$$$A.
Second directrix: $$$y = \frac{325 + 64 \sqrt{65}}{65}\approx 12.938223013709341$$$A.
First asymptote: $$$y = 53 - 8 x$$$A.
Second asymptote: $$$y = 8 x - 43$$$A.
x-intercepts: no x-intercepts.
y-intercepts: $$$\left(0, 5 - 8 \sqrt{37}\right)\approx \left(0, -43.662100242385758\right)$$$, $$$\left(0, 5 + 8 \sqrt{37}\right)\approx \left(0, 53.662100242385758\right)$$$A.
Domain: $$$\left(-\infty, \infty\right)$$$A.
Range: $$$\left(-\infty, -3\right] \cup \left[13, \infty\right)$$$A.