Identify the conic section $$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$
Related calculators: Parabola Calculator, Circle Calculator, Ellipse Calculator, Hyperbola Calculator
Your Input
Identify and find the properties of the conic section $$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$.
Solution
The general equation of a conic section is $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
In our case, $$$A = \frac{69828}{5}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -46226136$$$, $$$E = 0$$$, $$$F = 5050000000$$$.
The discriminant of the conic section is $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Next, $$$B^{2} - 4 A C = 0$$$.
Since $$$\Delta = 0$$$, this is the degenerated conic section.
Since $$$B^{2} - 4 A C = 0$$$, the equation represents two parallel lines.
Answer
$$$5050000000 = \frac{139656 x \left(1655 - \frac{x}{2}\right)}{5}$$$A represents a pair of the lines $$$x = 1655 - \frac{5 \sqrt{54783510441}}{759}$$$, $$$x = \frac{5 \left(\sqrt{54783510441} + 251229\right)}{759}$$$A.
General form: $$$\frac{69828 x^{2}}{5} - 46226136 x + 5050000000 = 0$$$A.
Factored form: $$$\left(759 x - 1256145 - 5 \sqrt{54783510441}\right) \left(759 x - 1256145 + 5 \sqrt{54783510441}\right) = 0.$$$A
Graph: see the graphing calculator.