Find composition of $$$f{\left(x \right)} = - 3 x$$$ and $$$g{\left(x \right)} = 5 x - 6$$$

The calculator will find the composition of the functions $$$f{\left(x \right)} = - 3 x$$$ and $$$g{\left(x \right)} = 5 x - 6$$$, with steps shown.

Related calculator: Operations on Functions Calculator

Optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the composition of $$$f{\left(x \right)} = - 3 x$$$ and $$$g{\left(x \right)} = 5 x - 6$$$.

Solution

$$$\left(f\circ g\right)\left(x\right) = f\left(g\left(x\right)\right) = f\left(5 x - 6\right) = - 3 {\color{red}\left(5 x - 6\right)} = 18 - 15 x$$$

$$$\left(g\circ f\right)\left(x\right) = g\left(f\left(x\right)\right) = g\left(- 3 x\right) = 5 {\color{red}\left(- 3 x\right)} - 6 = - 15 x - 6$$$

$$$\left(f\circ f\right)\left(x\right) = f\left(f\left(x\right)\right) = f\left(- 3 x\right) = - 3 {\color{red}\left(- 3 x\right)} = 9 x$$$

$$$\left(g\circ g\right)\left(x\right) = g\left(g\left(x\right)\right) = g\left(5 x - 6\right) = 5 {\color{red}\left(5 x - 6\right)} - 6 = 25 x - 36$$$

Answer

$$$\left(f\circ g\right)\left(x\right) = 18 - 15 x$$$A

$$$\left(g\circ f\right)\left(x\right) = - 15 x - 6$$$A

$$$\left(f\circ f\right)\left(x\right) = 9 x$$$A

$$$\left(g\circ g\right)\left(x\right) = 25 x - 36$$$A


Please try a new game Rotatly