$$$1$$$, $$$2$$$, $$$3$$$, $$$4$$$, $$$5$$$ 的變異數
您的輸入
求$$$1$$$, $$$2$$$, $$$3$$$, $$$4$$$, $$$5$$$的樣本變異數。
解答
資料的樣本變異數由公式 $$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}$$$ 給出,其中 $$$n$$$ 是數值的個數,$$$x_i, i=\overline{1..n}$$$ 是各個數值本身,而 $$$\mu$$$ 是這些數值的平均值。
實際上,它是標準差的平方。
資料的平均值為 $$$\mu = 3$$$(若要計算它,請參閱 平均值計算器)。
由於我們有 $$$n$$$ 個點,$$$n = 5$$$。
$$$\left(x_{i} - \mu\right)^{2}$$$的總和是$$$\left(1 - 3\right)^{2} + \left(2 - 3\right)^{2} + \left(3 - 3\right)^{2} + \left(4 - 3\right)^{2} + \left(5 - 3\right)^{2} = 10$$$。
因此,$$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1} = \frac{10}{4} = \frac{5}{2}$$$。
答案
樣本變異數為 $$$s^{2} = \frac{5}{2} = 2.5$$$A。