$$$2532$$$ 的質因數分解
您的輸入
求$$$2532$$$的質因數分解。
解答
從數 $$$2$$$ 開始。
判斷 $$$2532$$$ 是否可被 $$$2$$$ 整除。
它可被整除,因此,將 $$$2532$$$ 除以 $$${\color{green}2}$$$:$$$\frac{2532}{2} = {\color{red}1266}$$$。
判斷 $$$1266$$$ 是否能被 $$$2$$$ 整除。
它可被整除,因此,將 $$$1266$$$ 除以 $$${\color{green}2}$$$:$$$\frac{1266}{2} = {\color{red}633}$$$。
判斷 $$$633$$$ 是否能被 $$$2$$$ 整除。
由於不能被整除,移至下一個質數。
下一個質數是 $$$3$$$。
判斷 $$$633$$$ 是否能被 $$$3$$$ 整除。
它可被整除,因此,將 $$$633$$$ 除以 $$${\color{green}3}$$$:$$$\frac{633}{3} = {\color{red}211}$$$。
質數 $$${\color{green}211}$$$ 除了 $$$1$$$ 和 $$${\color{green}211}$$$ 之外,沒有其他因數:$$$\frac{211}{211} = {\color{red}1}$$$。
既然我們已經得到 $$$1$$$,我們就完成了。
現在,只要數一數因數(綠色數字)出現的次數,並寫出質因數分解:$$$2532 = 2^{2} \cdot 3 \cdot 211$$$
答案
質因數分解為 $$$2532 = 2^{2} \cdot 3 \cdot 211$$$A。
Please try a new game Rotatly