$$$1629$$$ 的質因數分解
您的輸入
求$$$1629$$$的質因數分解。
解答
從數 $$$2$$$ 開始。
判斷 $$$1629$$$ 是否可被 $$$2$$$ 整除。
由於不能被整除,移至下一個質數。
下一個質數是 $$$3$$$。
判斷 $$$1629$$$ 是否能被 $$$3$$$ 整除。
它可被整除,因此,將 $$$1629$$$ 除以 $$${\color{green}3}$$$:$$$\frac{1629}{3} = {\color{red}543}$$$。
判斷 $$$543$$$ 是否能被 $$$3$$$ 整除。
它可被整除,因此,將 $$$543$$$ 除以 $$${\color{green}3}$$$:$$$\frac{543}{3} = {\color{red}181}$$$。
質數 $$${\color{green}181}$$$ 除了 $$$1$$$ 和 $$${\color{green}181}$$$ 之外,沒有其他因數:$$$\frac{181}{181} = {\color{red}1}$$$。
既然我們已經得到 $$$1$$$,我們就完成了。
現在,只要數一數因數(綠色數字)出現的次數,並寫出質因數分解:$$$1629 = 3^{2} \cdot 181$$$
答案
質因數分解為 $$$1629 = 3^{2} \cdot 181$$$A。
Please try a new game Rotatly