分數轉小數計算器

逐步將分數轉換為小數

此計算器會將給定的分數(真分數或假分數)或帶分數轉換為小數(可能為循環小數),並顯示計算步驟。

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1700}{22}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{7}&\phantom{7}&\phantom{.}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\22&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&7&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$22$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-22 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}\color{OrangeRed}{0}&\phantom{0}&\phantom{7}&\phantom{7}&\phantom{.}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}\color{OrangeRed}{1}& 7 \downarrow&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$22$$$'s are in $$$17$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$17-22 \cdot 0 = 17 - 0= 17$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&\color{Violet}{0}&\phantom{7}&\phantom{7}&\phantom{.}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7& 0 \downarrow&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Violet}{1}&\color{Violet}{7}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$22$$$'s are in $$$170$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$170-22 \cdot 7 = 170 - 154= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&\color{DarkMagenta}{7}&\phantom{7}&\phantom{.}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0& 0 \downarrow&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{7}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$22$$$'s are in $$$160$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$160-22 \cdot 7 = 160 - 154= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&\color{DarkCyan}{7}&\phantom{.}&\phantom{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&\color{DarkCyan}{1}&\color{DarkCyan}{6}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$22$$$'s are in $$$60$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$60-22 \cdot 2 = 60 - 44= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&7&.&\color{SaddleBrown}{2}&\phantom{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&\color{SaddleBrown}{6}&\phantom{.}&\color{SaddleBrown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$22$$$'s are in $$$160$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$160-22 \cdot 7 = 160 - 154= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&7&.&2&\color{DeepPink}{7}&\phantom{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&6&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&4\\\hline\phantom{lll}&&&\color{DeepPink}{1}&\phantom{.}&\color{DeepPink}{6}&\color{DeepPink}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&5&4\\\hline\phantom{lll}&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$22$$$'s are in $$$60$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$60-22 \cdot 2 = 60 - 44= 16$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&7&.&2&7&\color{Peru}{2}&\phantom{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&6&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&5&4\\\hline\phantom{lll}&&&&&&\color{Peru}{6}&\color{Peru}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&4\\\hline\phantom{lll}&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 8

How many $$$22$$$'s are in $$$160$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$160-22 \cdot 7 = 160 - 154= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&7&.&2&7&2&\color{Chartreuse}{7}&\phantom{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&6&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&5&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&4\\\hline\phantom{lll}&&&&&&\color{Chartreuse}{1}&\color{Chartreuse}{6}&\color{Chartreuse}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&5&4\\\hline\phantom{lll}&&&&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 9

How many $$$22$$$'s are in $$$60$$$?

The answer is $$$2$$$.

Write down $$$2$$$ in the upper part of the table.

Now, $$$60-22 \cdot 2 = 60 - 44= 16$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccccc}0&0&7&7&.&2&7&2&7&\color{Green}{2}\end{array}&\\\color{Magenta}{22}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccccc}1&7&0&0&.&0&0&0&0&0\end{array}}&\\&\begin{array}{lllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&5&4&\phantom{.}\\\hline\phantom{lll}&1&6&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&4&\phantom{.}\\\hline\phantom{lll}&&&6&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&4\\\hline\phantom{lll}&&&1&\phantom{.}&6&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&5&4\\\hline\phantom{lll}&&&&&&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&4\\\hline\phantom{lll}&&&&&&1&6&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&5&4\\\hline\phantom{lll}&&&&&&&&\color{Green}{6}&\color{Green}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&4&4\\\hline\phantom{lll}&&&&&&&&1&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1700}{22}=77.2 \overline{72}$$$

Answer: $$$\frac{1700}{22}=77.2\overline{72}$$$


Please try a new game Rotatly