$$$\tanh{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\tanh{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tanh{\left(x \right)}\, dx$$$

解答

將雙曲正切改寫為 $$$\tanh\left(x\right)=\frac{\sinh\left(x\right)}{\cosh\left(x\right)}$$$:

$${\color{red}{\int{\tanh{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sinh{\left(x \right)}}{\cosh{\left(x \right)}} d x}}}$$

$$$u=\cosh{\left(x \right)}$$$

$$$du=\left(\cosh{\left(x \right)}\right)^{\prime }dx = \sinh{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sinh{\left(x \right)} dx = du$$$

該積分可改寫為

$${\color{red}{\int{\frac{\sinh{\left(x \right)}}{\cosh{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=\cosh{\left(x \right)}$$$

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\cosh{\left(x \right)}}}}\right| \right)}$$

因此,

$$\int{\tanh{\left(x \right)} d x} = \ln{\left(\cosh{\left(x \right)} \right)}$$

加上積分常數:

$$\int{\tanh{\left(x \right)} d x} = \ln{\left(\cosh{\left(x \right)} \right)}+C$$

答案

$$$\int \tanh{\left(x \right)}\, dx = \ln\left(\cosh{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly