$$$\frac{1}{x^{2} - 1}$$$ 的積分
您的輸入
求$$$\int \frac{1}{x^{2} - 1}\, dx$$$。
解答
進行部分分式分解(步驟可見 »):
$${\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
逐項積分:
$${\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
因此,
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(x + 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回顧一下 $$$u=x - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x} = \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x + 1\right)} d x}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
令 $$$u=x + 1$$$。
則 $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
因此,
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回顧一下 $$$u=x + 1$$$:
$$\frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}$$
因此,
$$\int{\frac{1}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$
加上積分常數:
$$\int{\frac{1}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$
答案
$$$\int \frac{1}{x^{2} - 1}\, dx = \left(\frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A