$$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$$$$\left(0, 0\right)$$$ 為中心逆時針旋轉 $$$45^{\circ}$$$

此計算器將點 $$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$ 以角度 $$$45^{\circ}$$$ 逆時針方向繞點 $$$\left(0, 0\right)$$$ 旋轉,並顯示計算步驟。
$$$($$$
,
$$$)$$$
$$$($$$
,
$$$)$$$
原點為點 $$$\left(0, 0\right)$$$

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\left(0, 0\right)$$$為中心,將$$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$逆時針旋轉$$$45^{\circ}$$$角。

解答

將點 $$$\left(x, y\right)$$$ 以原點為中心逆時針旋轉角度 $$$\theta$$$,會得到新點 $$$\left(x \cos{\left(\theta \right)} - y \sin{\left(\theta \right)}, x \sin{\left(\theta \right)} + y \cos{\left(\theta \right)}\right)$$$

在我們的情況下,$$$x = 3 \sqrt{2}$$$$$$y = - \frac{\sqrt{2}}{4}$$$$$$\theta = 45^{\circ}$$$

因此,新點為 $$$\left(3 \sqrt{2} \cos{\left(45^{\circ} \right)} - - \frac{\sqrt{2}}{4} \sin{\left(45^{\circ} \right)}, 3 \sqrt{2} \sin{\left(45^{\circ} \right)} + - \frac{\sqrt{2}}{4} \cos{\left(45^{\circ} \right)}\right) = \left(\frac{13}{4}, \frac{11}{4}\right)$$$

答案

新點為 $$$\left(\frac{13}{4}, \frac{11}{4}\right) = \left(3.25, 2.75\right)$$$A