分数转小数计算器
逐步将分数转换为小数
该计算器会将给定的分数(真分数或假分数)或带分数转换为小数(可能为循环小数),并显示步骤。
Solution
Your input: convert $$$\frac{5400}{90}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\90&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}5&4&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$90$$$'s are in $$$5$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$5-90 \cdot 0 = 5 - 0= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{GoldenRod}{0}&\phantom{0}&\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{90}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{GoldenRod}{5}& 4 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&4&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$90$$$'s are in $$$54$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$54-90 \cdot 0 = 54 - 0= 54$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{OrangeRed}{0}&\phantom{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{90}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&4& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{5}&\color{OrangeRed}{4}&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$90$$$'s are in $$$540$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$540-90 \cdot 6 = 540 - 540= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Violet}{6}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{90}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&4&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Violet}{5}&\color{Violet}{4}&\color{Violet}{0}&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&4&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$90$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-90 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&\color{Fuchsia}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{90}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&4&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&4&0&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&4&0&\phantom{.}\\\hline\phantom{lll}&&\color{Fuchsia}{0}&\color{Fuchsia}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$90$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-90 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&6&0&.&\color{Crimson}{0}\end{array}&\\\color{Magenta}{90}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&4&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&4&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}5&4&0&\phantom{.}\\-&\phantom{4}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&4&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Crimson}{0}&\phantom{.}&\color{Crimson}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{5400}{90}=60. \overline{0}$$$
Answer: $$$\frac{5400}{90}=60.\overline{0}$$$