分数转小数计算器
逐步将分数转换为小数
该计算器会将给定的分数(真分数或假分数)或带分数转换为小数(可能为循环小数),并显示步骤。
Solution
Your input: convert $$$\frac{5300}{50}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{0}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\50&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}5&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$50$$$'s are in $$$5$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$5-50 \cdot 0 = 5 - 0= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{DarkBlue}{0}&\phantom{1}&\phantom{0}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{DarkBlue}{5}& 3 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$50$$$'s are in $$$53$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$53-50 \cdot 1 = 53 - 50= 3$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Peru}{1}&\phantom{0}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&3& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Peru}{5}&\color{Peru}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$50$$$'s are in $$$30$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$30-50 \cdot 0 = 30 - 0= 30$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&\color{OrangeRed}{0}&\phantom{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&3&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&0&\phantom{.}\\\hline\phantom{lll}&\color{OrangeRed}{3}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&3&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$50$$$'s are in $$$300$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$300-50 \cdot 6 = 300 - 300= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&\color{DarkMagenta}{6}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&3&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&\color{DarkMagenta}{3}&\color{DarkMagenta}{0}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$50$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-50 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&6&.&\color{BlueViolet}{0}\end{array}&\\\color{Magenta}{50}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}5&3&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}5&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}5&0&\phantom{.}\\\hline\phantom{lll}&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&3&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&3&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{BlueViolet}{0}&\phantom{.}&\color{BlueViolet}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{5300}{50}=106.0$$$
Answer: $$$\frac{5300}{50}=106.0$$$