分数转小数计算器
逐步将分数转换为小数
该计算器会将给定的分数(真分数或假分数)或带分数转换为小数(可能为循环小数),并显示步骤。
Solution
Your input: convert $$$\frac{2700}{44}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{1}&\phantom{.}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\44&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}2&7&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$44$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-44 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}\color{Chartreuse}{2}& 7 \downarrow&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$44$$$'s are in $$$27$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$27-44 \cdot 0 = 27 - 0= 27$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&\color{Green}{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7& 0 \downarrow&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{2}&\color{Green}{7}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$44$$$'s are in $$$270$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$270-44 \cdot 6 = 270 - 264= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&\color{Purple}{6}&\phantom{1}&\phantom{.}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0& 0 \downarrow&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{2}&\color{Purple}{7}&\color{Purple}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$44$$$'s are in $$$60$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$60-44 \cdot 1 = 60 - 44= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&\color{Violet}{1}&\phantom{.}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&\color{Violet}{6}&\color{Violet}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$44$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-44 \cdot 3 = 160 - 132= 28$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&\color{Brown}{3}&\phantom{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{1}&\color{Brown}{6}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&2&\phantom{.}&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$44$$$'s are in $$$280$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$280-44 \cdot 6 = 280 - 264= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&3&\color{Blue}{6}&\phantom{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&\color{Blue}{2}&\phantom{.}&\color{Blue}{8}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&6&4\\\hline\phantom{lll}&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$44$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-44 \cdot 3 = 160 - 132= 28$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&3&6&\color{Peru}{3}&\phantom{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&2&\phantom{.}&8&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&6&4\\\hline\phantom{lll}&&&&&\color{Peru}{1}&\color{Peru}{6}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&3&2\\\hline\phantom{lll}&&&&&&2&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$44$$$'s are in $$$280$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$280-44 \cdot 6 = 280 - 264= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&3&6&3&\color{Fuchsia}{6}&\phantom{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&2&\phantom{.}&8&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&6&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&3&2\\\hline\phantom{lll}&&&&&&\color{Fuchsia}{2}&\color{Fuchsia}{8}&\color{Fuchsia}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&2&6&4\\\hline\phantom{lll}&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$44$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-44 \cdot 3 = 160 - 132= 28$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&3&6&3&6&\color{DarkCyan}{3}&\phantom{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&2&\phantom{.}&8&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&6&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&3&2\\\hline\phantom{lll}&&&&&&2&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&2&6&4\\\hline\phantom{lll}&&&&&&&\color{DarkCyan}{1}&\color{DarkCyan}{6}&\color{DarkCyan}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&3&2\\\hline\phantom{lll}&&&&&&&&2&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 10
How many $$$44$$$'s are in $$$280$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$280-44 \cdot 6 = 280 - 264= 16$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccc}0&0&6&1&.&3&6&3&6&3&\color{DarkBlue}{6}\end{array}&\\\color{Magenta}{44}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccc}2&7&0&0&.&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}2&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}2&6&4&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&4&4&\phantom{.}\\\hline\phantom{lll}&&1&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&3&\phantom{.}&2\\\hline\phantom{lll}&&&2&\phantom{.}&8&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&2&\phantom{.}&6&4\\\hline\phantom{lll}&&&&&1&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&3&2\\\hline\phantom{lll}&&&&&&2&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&2&6&4\\\hline\phantom{lll}&&&&&&&1&6&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&3&2\\\hline\phantom{lll}&&&&&&&&\color{DarkBlue}{2}&\color{DarkBlue}{8}&\color{DarkBlue}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&2&6&4\\\hline\phantom{lll}&&&&&&&&&1&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{2700}{44}=61.36 \overline{36}$$$
Answer: $$$\frac{2700}{44}=61.36\overline{36}$$$