分数转小数计算器
逐步将分数转换为小数
该计算器会将给定的分数(真分数或假分数)或带分数转换为小数(可能为循环小数),并显示步骤。
Solution
Your input: convert $$$\frac{100}{11}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{9}&\phantom{.}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\11&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}1&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$11$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-11 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Purple}{0}&\phantom{0}&\phantom{9}&\phantom{.}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Purple}{1}& 0 \downarrow&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DarkMagenta}{0}&\phantom{9}&\phantom{.}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0& 0 \downarrow&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{DeepPink}{9}&\phantom{.}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&.& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{1}&\color{DeepPink}{0}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&.&\color{Red}{0}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&.&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&\color{Red}{1}&\phantom{.}&\color{Red}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&1&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&.&0&\color{Crimson}{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&.&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&\color{Crimson}{1}&\phantom{.}&\color{Crimson}{0}&\color{Crimson}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}&9\\\hline\phantom{lll}&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&.&0&9&\color{DarkCyan}{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&.&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&1&\phantom{.}&0&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}&9\\\hline\phantom{lll}&&&&&\color{DarkCyan}{1}&\color{DarkCyan}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&.&0&9&0&\color{Violet}{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&1&\phantom{.}&0&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&9&\phantom{.}&9\\\hline\phantom{lll}&&&&&1&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&\color{Violet}{1}&\color{Violet}{0}&\color{Violet}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&9&9\\\hline\phantom{lll}&&&&&&&1\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{100}{11}=9. \overline{09}$$$
Answer: $$$\frac{100}{11}=9.\overline{09}$$$