$$$\sin{\left(x^{2} \right)}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$$$。
解答
函数$$$\sin{\left(x^{2} \right)}$$$是两个函数$$$f{\left(u \right)} = \sin{\left(u \right)}$$$和$$$g{\left(x \right)} = x^{2}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$正弦函数的导数为 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$返回到原变量:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:
$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$因此,$$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$。
答案
$$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$A
Please try a new game Rotatly