$$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$$$$\left(0, 0\right)$$$逆时针旋转$$$45^{\circ}$$$

该计算器将把点$$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$绕点$$$\left(0, 0\right)$$$逆时针旋转$$$45^{\circ}$$$,并显示步骤。
$$$($$$
,
$$$)$$$
$$$($$$
,
$$$)$$$
原点是点 $$$\left(0, 0\right)$$$

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$$$$\left(0, 0\right)$$$逆时针旋转$$$45^{\circ}$$$角。

解答

将点$$$\left(x, y\right)$$$绕原点按角度$$$\theta$$$逆时针旋转,会得到新点$$$\left(x \cos{\left(\theta \right)} - y \sin{\left(\theta \right)}, x \sin{\left(\theta \right)} + y \cos{\left(\theta \right)}\right)$$$

在我们的情况下,$$$x = 3 \sqrt{2}$$$$$$y = - \frac{\sqrt{2}}{4}$$$$$$\theta = 45^{\circ}$$$

因此,新点是 $$$\left(3 \sqrt{2} \cos{\left(45^{\circ} \right)} - - \frac{\sqrt{2}}{4} \sin{\left(45^{\circ} \right)}, 3 \sqrt{2} \sin{\left(45^{\circ} \right)} + - \frac{\sqrt{2}}{4} \cos{\left(45^{\circ} \right)}\right) = \left(\frac{13}{4}, \frac{11}{4}\right)$$$

答案

新点为 $$$\left(\frac{13}{4}, \frac{11}{4}\right) = \left(3.25, 2.75\right)$$$A