Question
Suppose that f(2) = , g(2) = , f' (2) = , and g'(2) = . Find h'(2).
-
h(x)=f(x)-g(x)
h'(2) =
-
h(x)=f(x)g(x)
h'(2) =
-
h(x)=f(x)/g(x)
h'(2) =
-
h(x)=g(x)/(1+f(x))
h'(2) =
Suppose that f(2) = , g(2) = , f' (2) = , and g'(2) = . Find h'(2).
h(x)=f(x)-g(x)
h'(2) =
h(x)=f(x)g(x)
h'(2) =
h(x)=f(x)/g(x)
h'(2) =
h(x)=g(x)/(1+f(x))
h'(2) =