Kesirden Ondalık Sayıya Dönüştürücü

Kesirleri adım adım ondalık sayılara dönüştürün

Hesaplayıcı, verilen kesri (basit veya bileşik) ya da tam sayılı kesri, adımları göstererek, gerekirse tekrarlayan (devirli) ondalık sayıya dönüştürür.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1200}{12}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\12&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&2&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$12$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-12 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Red}{0}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Red}{1}& 2 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$12$$$'s are in $$$12$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$12-12 \cdot 1 = 12 - 12= 0$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Crimson}{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{1}&\color{Crimson}{2}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$12$$$'s are in $$$0$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&\color{Chartreuse}{0}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&\color{Chartreuse}{0}&\color{Chartreuse}{0}&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$12$$$'s are in $$$0$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&\color{BlueViolet}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&\color{BlueViolet}{0}&\color{BlueViolet}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$12$$$'s are in $$$0$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$0-12 \cdot 0 = 0 - 0= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&1&0&0&.&\color{DarkCyan}{0}\end{array}&\\\color{Magenta}{12}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&2&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&2&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&2&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{2}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&&\color{DarkCyan}{0}&\phantom{.}&\color{DarkCyan}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1200}{12}=100.0 \overline{}$$$

Answer: $$$\frac{1200}{12}=100.0\overline{}$$$


Please try a new game Rotatly