$$$\frac{x}{x + 1}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{x}{x + 1}\, dx$$$.
Çözüm
Kesri yeniden yazın ve parçalara ayırın:
$${\color{red}{\int{\frac{x}{x + 1} d x}}} = {\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x + 1} d x}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$- \int{\frac{1}{x + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x + 1} d x} + {\color{red}{x}}$$
$$$u=x + 1$$$ olsun.
Böylece $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$x - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x + 1$$$:
$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}+C$$
Cevap
$$$\int \frac{x}{x + 1}\, dx = \left(x - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A