$$$- 2 \sqrt{3} - 6 i$$$ için kutupsal biçim
Girdiniz
$$$- 2 \sqrt{3} - 6 i$$$ sayısının kutupsal formunu bulun.
Çözüm
Karmaşık sayının standart biçimi $$$- 2 \sqrt{3} - 6 i$$$ şeklindedir.
Bir karmaşık sayı $$$a + b i$$$ için, kutupsal biçim $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ ile verilir; burada $$$r = \sqrt{a^{2} + b^{2}}$$$ ve $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$ olmak üzere.
Şu doğrudur: $$$a = - 2 \sqrt{3}$$$ ve $$$b = -6$$$.
Dolayısıyla, $$$r = \sqrt{\left(- 2 \sqrt{3}\right)^{2} + \left(-6\right)^{2}} = 4 \sqrt{3}$$$.
Ayrıca, $$$\theta = \operatorname{atan}{\left(\frac{-6}{- 2 \sqrt{3}} \right)} - \pi = - \frac{2 \pi}{3}$$$.
Dolayısıyla, $$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right)$$$.
Cevap
$$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right) = 4 \sqrt{3} \left(\cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}\right)$$$A