Çarpanlara Ayırma Hesaplayıcısı
İfadeleri adım adım çarpanlara ayırın
Hesaplayıcı, adımları gösterilerek, herhangi bir ifadeyi (polinom, binom, trinom, ikinci dereceden, rasyonel, irrasyonel, üssel, trigonometrik ya da bunların karışımı) çarpanlara ayırmayı dener. Bunu yapmak için, ifadeyi bir polinoma dönüştürmek üzere önce bazı ikameler uygulanır ve ardından şu teknikler kullanılır: monomlarda çarpanlara ayırma (ortak çarpan), ikinci dereceden ifadeleri çarpanlara ayırma, gruplayarak ve yeniden gruplayarak çarpanlara ayırma, toplamın/farkın karesi, toplamın/farkın küpü, kareler farkı, küplerin toplamı/farkı ve rasyonel kökler teoremi.
Solution
Your input: factor $$$x^{4} - 20 x^{2} + 64$$$.
We can treat $$$x^{4} - 20 x^{2} + 64$$$ as a quadratic function with respect to $$$x^{2}$$$.
Let $$$Y = x^{2}$$$.
Temporarily rewrite $$$x^{4} - 20 x^{2} + 64$$$ in terms of $$$Y$$$: $$$x^{4} - 20 x^{2} + 64$$$ becomes $$$Y^{2} - 20 Y + 64$$$.
To factor the quadratic function $$$Y^{2} - 20 Y + 64$$$, we should solve the corresponding quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
Indeed, if $$$Y_1$$$ and $$$Y_2$$$ are the roots of the quadratic equation $$$aY^2+bY+c=0$$$, then $$$aY^2+bY+c=a(Y-Y_1)(Y-Y_2)$$$.
Solve the quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
The roots are $$$Y_{1} = 16$$$, $$$Y_{2} = 4$$$ (use the quadratic equation calculator to see the steps).
Therefore, $$$Y^{2} - 20 Y + 64 = \left(Y - 16\right) \left(Y - 4\right)$$$.
Recall that $$$Y = x^{2}$$$: $$$x^{4} - 20 x^{2} + 64 = 1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)$$$.
$${\color{red}{\left(x^{4} - 20 x^{2} + 64\right)}} = {\color{red}{1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 2$$$:
$$\left(x^{2} - 16\right) {\color{red}{\left(x^{2} - 4\right)}} = \left(x^{2} - 16\right) {\color{red}{\left(x - 2\right) \left(x + 2\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 4$$$:
$$\left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x^{2} - 16\right)}} = \left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x - 4\right) \left(x + 4\right)}}$$
Thus, $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.
Answer: $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.