Cubic Regression Calculator

Find cubic polynomials of best fit step by step

The calculator will find the cubic polynomial of best fit for the given set of paired data using the least squares method, with steps shown.

Related calculators: Linear Regression Calculator, Quadratic Regression Calculator

Comma-separated.
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the cubic polynomial of best fit for $$$\left\{\left(-2, -7\right), \left(-1, -1\right), \left(0, 0\right), \left(1, 2\right), \left(2, 5\right)\right\}$$$.

Solution

The number of observations is $$$n = 5$$$.

Generate the following matrix $$$M = \left[\begin{array}{cccc}\left(-2\right)^{3} & \left(-2\right)^{2} & -2 & 1\\\left(-1\right)^{3} & \left(-1\right)^{2} & -1 & 1\\0^{3} & 0^{2} & 0 & 1\\1^{3} & 1^{2} & 1 & 1\\2^{3} & 2^{2} & 2 & 1\end{array}\right].$$$

Generate the following vector $$$Y = \left[\begin{array}{c}-7\\-1\\0\\2\\5\end{array}\right]$$$.

The vector of coefficients is $$$X = \left(M^T M\right)^{-1}M^T Y = \left[\begin{array}{c}\frac{1}{2}\\- \frac{5}{14}\\1\\\frac{18}{35}\end{array}\right]$$$.

Thus, the cubic polynomial of best fit is $$$y = \frac{x^{3}}{2} - \frac{5 x^{2}}{14} + x + \frac{18}{35}$$$.

Answer

The cubic polynomial of best fit is $$$y = \frac{x^{3}}{2} - \frac{5 x^{2}}{14} + x + \frac{18}{35}\approx 0.5 x^{3} - 0.357142857142857 x^{2} + x + 0.514285714285714.$$$A


Please try a new game Rotatly