Primfaktorisering av $$$4653$$$
Din inmatning
Bestäm primtalsfaktoriseringen av $$$4653$$$.
Lösning
Börja med talet $$$2$$$.
Avgör om $$$4653$$$ är delbart med $$$2$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$3$$$.
Avgör om $$$4653$$$ är delbart med $$$3$$$.
Det är delbart, så dela $$$4653$$$ med $$${\color{green}3}$$$: $$$\frac{4653}{3} = {\color{red}1551}$$$.
Avgör om $$$1551$$$ är delbart med $$$3$$$.
Det är delbart, så dela $$$1551$$$ med $$${\color{green}3}$$$: $$$\frac{1551}{3} = {\color{red}517}$$$.
Avgör om $$$517$$$ är delbart med $$$3$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$5$$$.
Avgör om $$$517$$$ är delbart med $$$5$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$7$$$.
Avgör om $$$517$$$ är delbart med $$$7$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$11$$$.
Avgör om $$$517$$$ är delbart med $$$11$$$.
Det är delbart, så dela $$$517$$$ med $$${\color{green}11}$$$: $$$\frac{517}{11} = {\color{red}47}$$$.
primtalet $$${\color{green}47}$$$ har inga andra delare än $$$1$$$ och $$${\color{green}47}$$$: $$$\frac{47}{47} = {\color{red}1}$$$.
Eftersom vi har erhållit $$$1$$$ är vi klara.
Räkna nu bara antalet förekomster av divisorerna (gröna tal), och skriv ner primfaktoriseringen: $$$4653 = 3^{2} \cdot 11 \cdot 47$$$.
Svar
Primtalsfaktoriseringen är $$$4653 = 3^{2} \cdot 11 \cdot 47$$$A.