Primfaktorisering av $$$3650$$$
Din inmatning
Bestäm primtalsfaktoriseringen av $$$3650$$$.
Lösning
Börja med talet $$$2$$$.
Avgör om $$$3650$$$ är delbart med $$$2$$$.
Det är delbart, så dela $$$3650$$$ med $$${\color{green}2}$$$: $$$\frac{3650}{2} = {\color{red}1825}$$$.
Avgör om $$$1825$$$ är delbart med $$$2$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$3$$$.
Avgör om $$$1825$$$ är delbart med $$$3$$$.
Eftersom det inte är delbart, gå vidare till nästa primtal.
Nästa primtal är $$$5$$$.
Avgör om $$$1825$$$ är delbart med $$$5$$$.
Det är delbart, så dela $$$1825$$$ med $$${\color{green}5}$$$: $$$\frac{1825}{5} = {\color{red}365}$$$.
Avgör om $$$365$$$ är delbart med $$$5$$$.
Det är delbart, så dela $$$365$$$ med $$${\color{green}5}$$$: $$$\frac{365}{5} = {\color{red}73}$$$.
primtalet $$${\color{green}73}$$$ har inga andra delare än $$$1$$$ och $$${\color{green}73}$$$: $$$\frac{73}{73} = {\color{red}1}$$$.
Eftersom vi har erhållit $$$1$$$ är vi klara.
Räkna nu bara antalet förekomster av divisorerna (gröna tal), och skriv ner primfaktoriseringen: $$$3650 = 2 \cdot 5^{2} \cdot 73$$$.
Svar
Primtalsfaktoriseringen är $$$3650 = 2 \cdot 5^{2} \cdot 73$$$A.