Kalkylator för partialderivator
Beräkna partiella derivator steg för steg
Den här onlinekalkylatorn beräknar funktionens partialderivata och visar stegen. Du kan ange vilken integrationsordning som helst.
Solution
Your input: find $$$\frac{\partial}{\partial x}\left(x y^{2} z^{3}\right)$$$
Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y^{2} z^{3}$$$ and $$$f=x$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(x y^{2} z^{3}\right)}}={\color{red}{y^{2} z^{3} \frac{\partial}{\partial x}\left(x\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:
$$y^{2} z^{3} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=y^{2} z^{3} {\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial x}\left(x y^{2} z^{3}\right)=y^{2} z^{3}$$$
Answer: $$$\frac{\partial}{\partial x}\left(x y^{2} z^{3}\right)=y^{2} z^{3}$$$
Please try a new game Rotatly