Integralen av $$$\frac{x}{x + 1}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{x}{x + 1}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{x}{x + 1}\, dx$$$.

Lösning

Skriv om och dela upp bråket:

$${\color{red}{\int{\frac{x}{x + 1} d x}}} = {\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}}$$

Integrera termvis:

$${\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x + 1} d x}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=1$$$:

$$- \int{\frac{1}{x + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x + 1} d x} + {\color{red}{x}}$$

Låt $$$u=x + 1$$$ vara.

$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Integralen blir

$$x - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$

Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Kom ihåg att $$$u=x + 1$$$:

$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$

Alltså,

$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}+C$$

Svar

$$$\int \frac{x}{x + 1}\, dx = \left(x - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly