Integralen av $$$\cos{\left(x^{2} \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \cos{\left(x^{2} \right)}\, dx$$$.
Lösning
Denna integral (Fresnels cosinusintegral) har ingen sluten form:
$${\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Alltså,
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$
Lägg till integrationskonstanten:
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}+C$$
Svar
$$$\int \cos{\left(x^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + C$$$A