Magnitude of 1,1225,925\left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle

The calculator will find the magnitude (length, norm) of the vector 1,1225,925\left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle, with steps shown.
\langle \rangle
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of u=1,1225,925\mathbf{\vec{u}} = \left\langle 1, - \frac{12}{25}, \frac{9}{25}\right\rangle.

Solution

The vector magnitude of a vector is given by the formula u=i=1nui2\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}.

The sum of squares of the absolute values of the coordinates is 12+12252+9252=3425\left|{1}\right|^{2} + \left|{- \frac{12}{25}}\right|^{2} + \left|{\frac{9}{25}}\right|^{2} = \frac{34}{25}.

Therefore, the magnitude of the vector is u=3425=345\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{34}{25}} = \frac{\sqrt{34}}{5}.

Answer

The magnitude is 3451.16619037896906\frac{\sqrt{34}}{5}\approx 1.16619037896906A.