Angle between Vectors Calculator

Find the angle between vectors step by step

The calculator will find the angle (in radians and degrees) between the two vectors and will show the work.

$$$\langle$$$ $$$\rangle$$$
Comma-separated.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate the angle between the vectors $$$\mathbf{\vec{u}} = \left\langle 5, -2, 3\right\rangle$$$ and $$$\mathbf{\vec{v}} = \left\langle -4, 5, 7\right\rangle$$$.

Solution

First, calculate the dot product: $$$\mathbf{\vec{u}}\cdot \mathbf{\vec{v}} = -9$$$ (for steps, see dot product calculator).

Next, find the lengths of the vectors:

$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{38}$$$ (for steps, see vector length calculator).

$$$\mathbf{\left\lvert\vec{v}\right\rvert} = 3 \sqrt{10}$$$ (for steps, see vector length calculator).

Finally, the angle is given by $$$\cos{\left(\phi \right)} = \frac{\mathbf{\vec{u}}\cdot \mathbf{\vec{v}}}{\mathbf{\left\lvert\vec{u}\right\rvert} \mathbf{\left\lvert\vec{v}\right\rvert}} = \frac{-9}{\left(\sqrt{38}\right)\cdot \left(3 \sqrt{10}\right)} = - \frac{3 \sqrt{95}}{190}$$$ (in case of complex numbers, we need to take the real part of the dot product).

$$$\phi = \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)} = \left(\frac{180 \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}}{\pi}\right)^{\circ}$$$

Answer

Angle in radians: $$$\phi = \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}\approx 1.725307134097968$$$A.

Angle in degrees: $$$\phi = \left(\frac{180 \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}}{\pi}\right)^{\circ}\approx 98.852817147625106^{\circ}.$$$A


Please try a new game Rotatly