Encontre $$$y{\left(\frac{1}{2} \right)}$$$ para $$$y^{\prime } = e^{- t^{2}}$$$, quando $$$y{\left(0 \right)} = 1$$$, $$$h = \frac{1}{10}$$$ usando o método de Euler aprimorado
Calculadoras relacionadas: Calculadora do Método de Euler, Calculadora do método de Euler modificado
Sua entrada
Encontre $$$y{\left(\frac{1}{2} \right)}$$$ para $$$y^{\prime } = e^{- t^{2}}$$$, quando $$$y{\left(0 \right)} = 1$$$, $$$h = \frac{1}{10}$$$ usando o método de Euler aprimorado.
Solução
O método de Euler aprimorado afirma que $$$y_{n+1} = y_{n} + \frac{h}{2} \left(f{\left(t_{n},y_{n} \right)} + f{\left(t_{n+1},\tilde{y}_{n+1} \right)}\right)$$$, onde $$$\tilde{y}_{n+1} = y_{n} + h\cdot f{\left(t_{n},y_{n} \right)}$$$ e $$$t_{n+1} = t_{n} + h$$$.
Temos que $$$h = \frac{1}{10}$$$, $$$t_{0} = 0$$$, $$$y_{0} = 1$$$ e $$$f{\left(t,y \right)} = e^{- t^{2}}$$$.
Passo 1
$$$t_{1} = t_{0} + h = 0 + \frac{1}{10} = \frac{1}{10}$$$
$$$\tilde{y}_{1} = \tilde{y}{\left(t_{1} \right)} = \tilde{y}{\left(\frac{1}{10} \right)} = y_{0} + h\cdot f{\left(t_{0},y_{0} \right)} = 1 + h\cdot f{\left(0,1 \right)} = 1 + \frac{1}{10} \cdot 1 = 1.1$$$
$$$y_{1} = y{\left(t_{1} \right)} = y{\left(\frac{1}{10} \right)} = y_{0} + \frac{h}{2} \left(f{\left(t_{0},y_{0} \right)} + f{\left(t_{1},\tilde{y}_{1} \right)}\right) = 1 + \frac{h}{2} \left(f{\left(0,1 \right)} + f{\left(\frac{1}{10},1.1 \right)}\right) = 1 + \frac{\frac{1}{10}}{2} \left(1 + 0.990049833749168\right) = 1.09950249168746$$$
Passo 2
$$$t_{2} = t_{1} + h = \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$$
$$$\tilde{y}_{2} = \tilde{y}{\left(t_{2} \right)} = \tilde{y}{\left(\frac{1}{5} \right)} = y_{1} + h\cdot f{\left(t_{1},y_{1} \right)} = 1.09950249168746 + h\cdot f{\left(\frac{1}{10},1.09950249168746 \right)} = 1.09950249168746 + \frac{1}{10} \cdot 0.990049833749168 = 1.19850747506238$$$
$$$y_{2} = y{\left(t_{2} \right)} = y{\left(\frac{1}{5} \right)} = y_{1} + \frac{h}{2} \left(f{\left(t_{1},y_{1} \right)} + f{\left(t_{2},\tilde{y}_{2} \right)}\right) = 1.09950249168746 + \frac{h}{2} \left(f{\left(\frac{1}{10},1.09950249168746 \right)} + f{\left(\frac{1}{5},1.19850747506238 \right)}\right) = 1.09950249168746 + \frac{\frac{1}{10}}{2} \left(0.990049833749168 + 0.960789439152323\right) = 1.19704445533253$$$
Passo 3
$$$t_{3} = t_{2} + h = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$$$
$$$\tilde{y}_{3} = \tilde{y}{\left(t_{3} \right)} = \tilde{y}{\left(\frac{3}{10} \right)} = y_{2} + h\cdot f{\left(t_{2},y_{2} \right)} = 1.19704445533253 + h\cdot f{\left(\frac{1}{5},1.19704445533253 \right)} = 1.19704445533253 + \frac{1}{10} \cdot 0.960789439152323 = 1.29312339924777$$$
$$$y_{3} = y{\left(t_{3} \right)} = y{\left(\frac{3}{10} \right)} = y_{2} + \frac{h}{2} \left(f{\left(t_{2},y_{2} \right)} + f{\left(t_{3},\tilde{y}_{3} \right)}\right) = 1.19704445533253 + \frac{h}{2} \left(f{\left(\frac{1}{5},1.19704445533253 \right)} + f{\left(\frac{3}{10},1.29312339924777 \right)}\right) = 1.19704445533253 + \frac{\frac{1}{10}}{2} \left(0.960789439152323 + 0.913931185271228\right) = 1.29078048655371$$$
Passo 4
$$$t_{4} = t_{3} + h = \frac{3}{10} + \frac{1}{10} = \frac{2}{5}$$$
$$$\tilde{y}_{4} = \tilde{y}{\left(t_{4} \right)} = \tilde{y}{\left(\frac{2}{5} \right)} = y_{3} + h\cdot f{\left(t_{3},y_{3} \right)} = 1.29078048655371 + h\cdot f{\left(\frac{3}{10},1.29078048655371 \right)} = 1.29078048655371 + \frac{1}{10} \cdot 0.913931185271228 = 1.38217360508083$$$
$$$y_{4} = y{\left(t_{4} \right)} = y{\left(\frac{2}{5} \right)} = y_{3} + \frac{h}{2} \left(f{\left(t_{3},y_{3} \right)} + f{\left(t_{4},\tilde{y}_{4} \right)}\right) = 1.29078048655371 + \frac{h}{2} \left(f{\left(\frac{3}{10},1.29078048655371 \right)} + f{\left(\frac{2}{5},1.38217360508083 \right)}\right) = 1.29078048655371 + \frac{\frac{1}{10}}{2} \left(0.913931185271228 + 0.852143788966211\right) = 1.37908423526558$$$
Passo 5
$$$t_{5} = t_{4} + h = \frac{2}{5} + \frac{1}{10} = \frac{1}{2}$$$
$$$\tilde{y}_{5} = \tilde{y}{\left(t_{5} \right)} = \tilde{y}{\left(\frac{1}{2} \right)} = y_{4} + h\cdot f{\left(t_{4},y_{4} \right)} = 1.37908423526558 + h\cdot f{\left(\frac{2}{5},1.37908423526558 \right)} = 1.37908423526558 + \frac{1}{10} \cdot 0.852143788966211 = 1.4642986141622$$$
$$$y_{5} = y{\left(t_{5} \right)} = y{\left(\frac{1}{2} \right)} = y_{4} + \frac{h}{2} \left(f{\left(t_{4},y_{4} \right)} + f{\left(t_{5},\tilde{y}_{5} \right)}\right) = 1.37908423526558 + \frac{h}{2} \left(f{\left(\frac{2}{5},1.37908423526558 \right)} + f{\left(\frac{1}{2},1.4642986141622 \right)}\right) = 1.37908423526558 + \frac{\frac{1}{10}}{2} \left(0.852143788966211 + 0.778800783071405\right) = 1.46063146386746$$$
Responder
$$$y{\left(\frac{1}{2} \right)}\approx 1.46063146386746$$$A