Integral de $$$\frac{x}{x + 1}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{x}{x + 1}\, dx$$$.
Solução
Reescreva e separe a fração:
$${\color{red}{\int{\frac{x}{x + 1} d x}}} = {\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x + 1} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$- \int{\frac{1}{x + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x + 1} d x} + {\color{red}{x}}$$
Seja $$$u=x + 1$$$.
Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Assim,
$$x - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recorde que $$$u=x + 1$$$:
$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Portanto,
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}$$
Adicione a constante de integração:
$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}+C$$
Resposta
$$$\int \frac{x}{x + 1}\, dx = \left(x - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A