Integral de $$$\cos{\left(x^{2} \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \cos{\left(x^{2} \right)}\, dx$$$.
Solução
Esta integral (Integral de Fresnel do cosseno) não possui forma fechada:
$${\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Portanto,
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$
Adicione a constante de integração:
$$\int{\cos{\left(x^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}+C$$
Resposta
$$$\int \cos{\left(x^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + C$$$A