Integral of $$$e^{9 x}$$$
Related calculator: Integral Calculator
Solution
Let $$$u=9 x$$$.
Then $$$du=\left(9 x\right)^{\prime }dx = 9 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{9}$$$.
Thus,
$${\color{red}{\int{e^{9 x} d x}}} = {\color{red}{\int{\frac{e^{u}}{9} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{9}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{9} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{9}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{9} = \frac{{\color{red}{e^{u}}}}{9}$$
Recall that $$$u=9 x$$$:
$$\frac{e^{{\color{red}{u}}}}{9} = \frac{e^{{\color{red}{\left(9 x\right)}}}}{9}$$
Therefore,
$$\int{e^{9 x} d x} = \frac{e^{9 x}}{9}$$
Add the constant of integration:
$$\int{e^{9 x} d x} = \frac{e^{9 x}}{9}+C$$
Answer
$$$\int e^{9 x}\, dx = \frac{e^{9 x}}{9} + C$$$A