Derivative of $$$3 x$$$

The calculator will find the derivative of $$$3 x$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 3$$$ and $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(3 x\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$3 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 3 {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{dx} \left(3 x\right) = 3$$$.

Answer

$$$\frac{d}{dx} \left(3 x\right) = 3$$$A