Integral of $$$x y$$$ with respect to $$$x$$$
The calculator will find the integral/antiderivative of $$$x y$$$ with respect to $$$x$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=y$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{x y d x}}} = {\color{red}{y \int{x d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$y {\color{red}{\int{x d x}}}=y {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=y {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{x y d x} = \frac{x^{2} y}{2}$$
Add the constant of integration:
$$\int{x y d x} = \frac{x^{2} y}{2}+C$$
Answer
$$$\int x y\, dx = \frac{x^{2} y}{2} + C$$$A