Derivative of $$$\frac{5}{x}$$$
The calculator will find the derivative of $$$\frac{5}{x}$$$, with steps shown.
Related calculator: Derivative Calculator
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 5$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{5}{x}\right)\right)} = {\color{red}\left(5 \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = -1$$$:
$$5 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = 5 {\color{red}\left(- \frac{1}{x^{2}}\right)}$$Thus, $$$\frac{d}{dx} \left(\frac{5}{x}\right) = - \frac{5}{x^{2}}$$$.
Answer
$$$\frac{d}{dx} \left(\frac{5}{x}\right) = - \frac{5}{x^{2}}$$$A