Properties of the circle $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$
Related calculator: Circle Calculator
Solution
The standard form of the equation of a circle is $$$\left(x - h\right)^{2} + \left(y - k\right)^{2} = r^{2}$$$, where $$$\left(h, k\right)$$$ is the center of the circle and $$$r$$$ is the radius.
Our circle in this form is $$$\left(x - \left(-9\right)\right)^{2} + \left(y - 6\right)^{2} = \left(\sqrt{102}\right)^{2}$$$.
Thus, $$$h = -9$$$, $$$k = 6$$$, $$$r = \sqrt{102}$$$.
The standard form is $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$.
The general form can be found by moving everything to the left side and expanding (if needed): $$$x^{2} + 18 x + y^{2} - 12 y + 15 = 0$$$.
Center: $$$\left(-9, 6\right)$$$.
Radius: $$$r = \sqrt{102}$$$.
Diameter: $$$d = 2 r = 2 \sqrt{102}$$$.
Circumference: $$$C = 2 \pi r = 2 \sqrt{102} \pi$$$.
Area: $$$A = \pi r^{2} = 102 \pi$$$.
Both eccentricity and linear eccentricity of a circle equal $$$0$$$.
The x-intercepts can be found by setting $$$y = 0$$$ in the equation and solving for $$$x$$$ (for steps, see intercepts calculator).
x-intercepts: $$$\left(-9 - \sqrt{66}, 0\right)$$$, $$$\left(-9 + \sqrt{66}, 0\right)$$$
The y-intercepts can be found by setting $$$x = 0$$$ in the equation and solving for $$$y$$$: (for steps, see intercepts calculator).
y-intercepts: $$$\left(0, 6 - \sqrt{21}\right)$$$, $$$\left(0, \sqrt{21} + 6\right)$$$
The domain is $$$\left[h - r, h + r\right] = \left[- \sqrt{102} - 9, -9 + \sqrt{102}\right]$$$.
The range is $$$\left[k - r, k + r\right] = \left[6 - \sqrt{102}, 6 + \sqrt{102}\right]$$$.
Answer
Standard form/equation: $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$A.
General form/equation: $$$x^{2} + 18 x + y^{2} - 12 y + 15 = 0$$$A.
Graph: see the graphing calculator.
Center: $$$\left(-9, 6\right)$$$A.
Radius: $$$\sqrt{102}\approx 10.099504938362078$$$A.
Diameter: $$$2 \sqrt{102}\approx 20.199009876724156$$$A.
Circumference: $$$2 \sqrt{102} \pi\approx 63.457061038504283$$$A.
Area: $$$102 \pi\approx 320.44245066615891$$$A.
Eccentricity: $$$0$$$A.
Linear eccentricity: $$$0$$$A.
x-intercepts: $$$\left(-9 - \sqrt{66}, 0\right)\approx \left(-17.12403840463596, 0\right)$$$, $$$\left(-9 + \sqrt{66}, 0\right)\approx \left(-0.87596159536404, 0\right)$$$A.
y-intercepts: $$$\left(0, 6 - \sqrt{21}\right)\approx \left(0, 1.41742430504416\right)$$$, $$$\left(0, \sqrt{21} + 6\right)\approx \left(0, 10.58257569495584\right)$$$A.
Domain: $$$\left[- \sqrt{102} - 9, -9 + \sqrt{102}\right]\approx \left[-19.099504938362078, 1.099504938362078\right].$$$A
Range: $$$\left[6 - \sqrt{102}, 6 + \sqrt{102}\right]\approx \left[-4.099504938362078, 16.099504938362078\right].$$$A