Integral of $$$\ln\left(2\right)$$$

The calculator will find the integral/antiderivative of $$$\ln\left(2\right)$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\ln{\left(2 \right)}$$$:

$${\color{red}{\int{\ln{\left(2 \right)} d x}}} = {\color{red}{x \ln{\left(2 \right)}}}$$

Therefore,

$$\int{\ln{\left(2 \right)} d x} = x \ln{\left(2 \right)}$$

Add the constant of integration:

$$\int{\ln{\left(2 \right)} d x} = x \ln{\left(2 \right)}+C$$

Answer

$$$\int \ln\left(2\right)\, dx = x \ln\left(2\right) + C$$$A