Integral of $$$x e^{x}$$$
Related calculator: Integral Calculator
Solution
For the integral $$$\int{x e^{x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
The integral can be rewritten as
$${\color{red}{\int{x e^{x} d x}}}={\color{red}{\left(x \cdot e^{x}-\int{e^{x} \cdot 1 d x}\right)}}={\color{red}{\left(x e^{x} - \int{e^{x} d x}\right)}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$x e^{x} - {\color{red}{\int{e^{x} d x}}} = x e^{x} - {\color{red}{e^{x}}}$$
Therefore,
$$\int{x e^{x} d x} = x e^{x} - e^{x}$$
Simplify:
$$\int{x e^{x} d x} = \left(x - 1\right) e^{x}$$
Add the constant of integration:
$$\int{x e^{x} d x} = \left(x - 1\right) e^{x}+C$$
Answer
$$$\int x e^{x}\, dx = \left(x - 1\right) e^{x} + C$$$A