Derivative of $$$- \cos{\left(x \right)}$$$
The calculator will find the derivative of $$$- \cos{\left(x \right)}$$$, with steps shown.
Related calculator: Derivative Calculator
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = -1$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \cos{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$The derivative of the cosine is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = - {\color{red}\left(- \sin{\left(x \right)}\right)}$$Thus, $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Answer
$$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$A