Derivative of $$$- \cos{\left(x \right)}$$$

The calculator will find the derivative of $$$- \cos{\left(x \right)}$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = -1$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(- \cos{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

The derivative of the cosine is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:

$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = - {\color{red}\left(- \sin{\left(x \right)}\right)}$$

Thus, $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.

Answer

$$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$A