Integral of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$
The calculator will find the integral/antiderivative of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
The integral of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$ is $$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}$$$:
$${\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}} = {\color{red}{\left(- \csc{\left(x \right)}\right)}}$$
Therefore,
$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}$$
Add the constant of integration:
$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}+C$$
Answer
$$$\int \cot{\left(x \right)} \csc{\left(x \right)}\, dx = - \csc{\left(x \right)} + C$$$A