Integral of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

The integral of $$$\cot{\left(x \right)} \csc{\left(x \right)}$$$ is $$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}$$$:

$${\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}} = {\color{red}{\left(- \csc{\left(x \right)}\right)}}$$

Therefore,

$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}$$

Add the constant of integration:

$$\int{\cot{\left(x \right)} \csc{\left(x \right)} d x} = - \csc{\left(x \right)}+C$$

Answer

$$$\int \cot{\left(x \right)} \csc{\left(x \right)}\, dx = - \csc{\left(x \right)} + C$$$A