Integral of $$$\frac{e^{x}}{x}$$$

The calculator will find the integral/antiderivative of $$$\frac{e^{x}}{x}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

This integral (Exponential Integral) does not have a closed form:

$${\color{red}{\int{\frac{e^{x}}{x} d x}}} = {\color{red}{\operatorname{Ei}{\left(x \right)}}}$$

Therefore,

$$\int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}$$

Add the constant of integration:

$$\int{\frac{e^{x}}{x} d x} = \operatorname{Ei}{\left(x \right)}+C$$

Answer

$$$\int \frac{e^{x}}{x}\, dx = \operatorname{Ei}{\left(x \right)} + C$$$A