Derivative of $$$\operatorname{acsc}{\left(x \right)}$$$
The calculator will find the derivative of $$$\operatorname{acsc}{\left(x \right)}$$$, with steps shown.
Related calculator: Derivative Calculator
Solution
The derivative of the inverse cosecant is $$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$Simplify:
$$- \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$Thus, $$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.
Answer
$$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$A