Integral of $$$e^{\frac{x}{2}}$$$
Related calculator: Integral Calculator
Solution
Let $$$u=\frac{x}{2}$$$.
Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen »), and we have that $$$dx = 2 du$$$.
Therefore,
$${\color{red}{\int{e^{\frac{x}{2}} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{2}$$$:
$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$
Therefore,
$$\int{e^{\frac{x}{2}} d x} = 2 e^{\frac{x}{2}}$$
Add the constant of integration:
$$\int{e^{\frac{x}{2}} d x} = 2 e^{\frac{x}{2}}+C$$
Answer
$$$\int e^{\frac{x}{2}}\, dx = 2 e^{\frac{x}{2}} + C$$$A