Integral of $$$e^{a x}$$$ with respect to $$$x$$$
Related calculator: Integral Calculator
Solution
Let $$$u=a x$$$.
Then $$$du=\left(a x\right)^{\prime }dx = a dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{a}$$$.
The integral becomes
$${\color{red}{\int{e^{a x} d x}}} = {\color{red}{\int{\frac{e^{u}}{a} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{a}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{e^{u}}{a} d u}}} = {\color{red}{\frac{\int{e^{u} d u}}{a}}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{{\color{red}{\int{e^{u} d u}}}}{a} = \frac{{\color{red}{e^{u}}}}{a}$$
Recall that $$$u=a x$$$:
$$\frac{e^{{\color{red}{u}}}}{a} = \frac{e^{{\color{red}{a x}}}}{a}$$
Therefore,
$$\int{e^{a x} d x} = \frac{e^{a x}}{a}$$
Add the constant of integration:
$$\int{e^{a x} d x} = \frac{e^{a x}}{a}+C$$
Answer
$$$\int e^{a x}\, dx = \frac{e^{a x}}{a} + C$$$A