Integral of $$$\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}$$$

The calculator will find the integral/antiderivative of $$$\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Let $$$u=\cos{\left(t \right)} + 1$$$.

Then $$$du=\left(\cos{\left(t \right)} + 1\right)^{\prime }dt = - \sin{\left(t \right)} dt$$$ (steps can be seen »), and we have that $$$\sin{\left(t \right)} dt = - du$$$.

So,

$${\color{red}{\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t}}} = {\color{red}{\int{\left(- u\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = u$$$:

$${\color{red}{\int{\left(- u\right)d u}}} = {\color{red}{\left(- \int{u d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$- {\color{red}{\int{u d u}}}=- {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Recall that $$$u=\cos{\left(t \right)} + 1$$$:

$$- \frac{{\color{red}{u}}^{2}}{2} = - \frac{{\color{red}{\left(\cos{\left(t \right)} + 1\right)}}^{2}}{2}$$

Therefore,

$$\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t} = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2}$$

Add the constant of integration:

$$\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t} = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2}+C$$

Answer

$$$\int \left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}\, dt = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2} + C$$$A